New physics in B decays? Challenges to Lepton Flavor Universality from LHCb and the B factories

Manuel Franco Sevilla

University of Maryland

7th September 2021 UMD colloquium

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

Outline

From the XVII to the XIX centuries, extraordinary progress in our fundamental understanding of the universe

"It seems probable that most of the grand underlying principles have been *firmly established...* An eminent physicist remarked that the future truths of physical science are to be looked for in the sixth place of decimals"

Michelson in 1894

Manuel Franco Sevilla

Physics complete in the XIX century? 🌆 👘

Lord Kelvin's clouds

Manuel Franco Sevilla

"The beauty and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is at present obscured by two clouds"

Slide 4

The Standard Model of particle physics 🖗 🐞

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

The Standard Model of particle physics 🖗 🐞

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

Most precise and comprehensive theory in the history of mankind

Anything left to discover?

<u>VMU</u>

Beyond the SM (BSM)

Manuel Franco Sevilla

Looking in many directions

Manuel Franco Sevilla

BSM searches

Indirect searches

Compare *precision measurements* to SM predictions looking for virtual BSM contributions

Guided us to discoveries in the past

- Absence of $K_L \rightarrow \mu \mu \Rightarrow$ charm quark (Glashow, Iliopoulos, Maiani, 1970)
- $\epsilon_K \Rightarrow 3$ rd generation (t, b quarks) (Kobayashi & Maskawa, 1972)
- $\Delta m_K \Rightarrow m_c \sim 1.5 \, {
 m GeV}$ (Gaillard & Lee; Vainshtein & Khriplovich, 1974)
- $\Delta m_B \Rightarrow m_t \gtrsim 100 \,\text{GeV}$ (bound in 1987: $23 \,\text{GeV}$) \Rightarrow large CP violation & FCNC

Measurements of B decays give us access to mass scales beyond the reach of current particle accelerators

Slide 8

Indirect searches in the news

Manuel Franco Sevilla

g-2

Lepton Flavor Universality (LFU)

∼ It is assumed that electroweak gauge couplings to 3 fermion generations are identical

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

LFU tested to great precision

LFU tests with e/μ (1st/2nd gen.)

To 0.28% in Z decays

To **0.8%** in W decays

To **0.31%** in meson decays

To 0.14% in $\tau \rightarrow \ell \nu \nu$

$\Gamma_{Z \to \mu\mu}$ _ 1 (000 ± 0.0028
$\Gamma_{Z \to ee}$ - 1.0	LEP, <u>Phys. Rept. 427 (2006) 257</u>
$\mathscr{B}(W \to e\nu)$) = 1.004 + 0.008
$\mathscr{B}(W \to \mu \nu)$) CDF + LHC, <u>JPG: NPP, 46, 2 (2019)</u>
$\Gamma_{J/\psi \to \mu\mu}$ _ 1	0016 - 0 0021
$\Gamma_{J/\psi \to ee} = \int_{DG}$	(BESIII), <u>RPP, Chin. Phys. C40 (2016) 100001</u>
$\frac{\Gamma_{K\to e\nu}}{=}=(2,$	$.488 \pm 0.009) \times 10^{-5}$
$\Gamma_{K \to \mu\nu}$ PDG	(NA62), <u>RPP, Chin. Phys. C40 (2016) 100001</u>
$\frac{\Gamma_{\pi \to e\nu}}{\Gamma} = (1.$	$230 \pm 0.004) \times 10^{-4}$
$\mathbf{I} \pi \rightarrow \mu \nu$	PiENu, Phys. Rev. Lett. 115, 071801 (2015)

 $g_{\mu}/g_e = 1.0018 \pm 0.0014$

PDG, A. Pich, Prog. Part. Nucl. Phys. 75 (2014) 41

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

LFU tests with τ (3rd gen.)

To **0.32%** in Z decays

2.6σ tension in W decays

To 1.3% in W decays

 $\frac{\Gamma_{Z \to \tau\tau}}{\Gamma_{Z \to ee}} = 1.0019 \pm 0.0032$ LEP, Phys. Rept. 427 (2006) 257 $\frac{\Gamma_{W \to \tau\nu}}{\Gamma_{W \to \mu\nu}} = 1.070 \pm 0.026$ LEP, Phys. Rept. 532 (2013) 119

 $\frac{\Gamma_{W \to \tau \nu}}{\Gamma_{W \to \mu \nu}} = 0.992 \pm 0.013$ ATLAS, <u>arXiv:2007.14040</u>

To 6.1% in D_s decays

 $\frac{\Gamma_{D_s \to \tau \nu}}{\Gamma_{D_s \to \mu \nu}} = 9.95 \pm 0.61$ HFLAV, Eur. Phys. J. C77 (2017) 895

To **0.15%** in $\tau \rightarrow \ell \nu \nu \text{ (with } \tau_{\tau})$

 $g_{\tau}/g_{\mu} = 1.0030 \pm 0.0015$

PDG, S. Pich, Prog. Part. Nucl. Phys. 75 (2014) 41

2. The machines

	Accelerator	Lab	Country	From	-
BaBar	PEP-II	SLAC	USA	1999	
Belle	KEKB	KEK	Japan	1999	
Belle II	KEKB	KEK	Japan	2018	

Optimized for clean $e^+e^- \rightarrow B\bar{B}$ production

Manuel Franco Sevilla

Bfactories

	Accelerator	Lab	Country	From	-
BaBar	PEP-II	SLAC	USA	1999	
Belle	KEKB	KEK	Japan	1999	
Belle II	KEKB	KEK	Japan	2018	

Optimized for clean $e^+e^- \rightarrow B\bar{B}$ production

Manuel Franco Sevilla

Bfactories

Since 100% of e^+e^- collision energy goes to $B\overline{B}$, can reconstruct v 4-momentum

Accelerator	Lab	Country	From	То
LHC	CERN	Switzerland/ France	2008	~2041

- ∼ LHC pp collisions at 14 TeV
 - $\rightarrow pp \rightarrow b\bar{b} \rightarrow H_h\bar{H}_h$ with $H_b = B, B_s, \Lambda_b, B_c$
 - → Cross section 10⁵ higher than **B** factories
 - Messy environment and protons not elementary
- ~ Detectors
 - → LHCb tailored for B physics
 - → ATLAS, CMS general purpose, but higher stats

If there is no other option

Photon Neutral hadron -**Electron** Charged hadron —

High precision

The LHC experiments

RICH1

Locato

15m

Muon **VELO RICH1 TT Magnet T-layers RICH2 ECALHCAL** stations

10m

Challenges to Lepton Flavor Universality from LHCb and the B factories

5m

Ζ

20m

LHC environment is slightly busier

 $pp \to X_b B_s^0 X$ $B_s^0 \rightarrow \mu^+ \mu^-$

LHC pp collisions have background from $b\bar{b}$ hadronization, underlying event, and pileup

> Clean e^+e^- collisions only produce two B mesons (for the most part)

Manuel Franco Sevilla

B-factories

Vertexing and isolation key to LHC

Manuel Franco Sevilla

~ B mesons can fly ~ cm thanks to large boost ~ Excellent trackers in CMS and ATLAS ~ Superb vertexing by VELO in LHCb → Only 8.2 mm from IP, reduced to 5.1 in upgrade Multivariate algorithms ensure tracks isolated Based on track impact parameter, other variables

Manuel Franco Sevilla

B factories vs LHC summary

 $\mathcal{O}(10^9) B^{0/+}$ mesons Low uncertainty on absolute rates, 100% ε(trigger), PID, low e-brem, knowledge of collision momentum

B-factories

With $\mathcal{O}(10^8) B^{0/+}$ mesons already competitive search for $B \to K \nu \bar{\nu}!$

 $\mathcal{O}(10^{11}) B_{(s)}^{0/+}$ mesons Triggers primarily for flavor, PID, VELO, all b-hadron species

LHC

 $\mathcal{O}(10^{12}) B_{(c)}^{0/+}$ mesons **All b-hadron species**

3. Charged LFU results with $b \rightarrow c \tau \nu$ transitions

Driginally from BaBar

Very solid SM predictions with just 1-2% uncertainty

 $\mathscr{R}(D)^{SM} = 0.299 \pm 0.003$ $\mathscr{R}(D^*)^{SM} = 0.258 \pm 0.005$

Manuel Franco Sevilla

Charged LFU ($b \rightarrow c \tau \nu$ transitions)

Ratios of branching fractions to cancel out uncertainties

$$= \frac{\mathscr{B}\left(\bar{B} \to D^{(*)}\tau\nu_{\tau}\right)}{\mathscr{B}\left(\bar{B} \to D^{(*)}\ell\nu_{\ell}\right)}$$

with
$$\ell = \mu, e$$

 $\mathscr{R}(D^{(*)}) \equiv \mathscr{R}(D)$ or \mathscr{G}

Any established deviations would be clear indications of **BSM physics**

Signal *τ* reconstructed as $\tau^- \to \ell^- \nu_\tau \bar{\nu}_\ell$, leads to same reco particles as normalization

$$\mathscr{R}\left(D^{(*)}\right) = \frac{\mathscr{B}\left(\bar{B} \to D^{(*)}\tau\nu_{\tau}\right)}{\mathscr{B}\left(\bar{B} \to D^{(*)}\ell\nu_{\ell}\right)}$$

Many experimental uncertainties cancel on $\mathscr{R}\left(D^{(*)}\right)$

Manuel Franco Sevilla

Leptonic τ reconstruction

Reconstruct B_{tag} and take advantage that 100% of e^+e^- collision energy goes to $B\overline{B}$ to measure 4-momenta of neutrinos

$$m_{miss}^2 = \left(p_{e^+e^-} - p_{B_{tag}} - p_{D^{(*)}} - p_{\ell}\right)^2$$

Manuel Franco Sevilla

Missing mass at the B factories

0.85 The PDES and are 260 $\begin{array}{c} \begin{array}{c} \begin{array}{c} & & \\ & & \\ \hline 0.2 & 0.4 \\ & \\ & \\ M_{\text{miss}}^2 (\text{GeV}^2/\text{c}^4) \end{array} \end{array} \begin{array}{c} \begin{array}{c} \hline 13 \\ \hline 0.6 \\ \hline 0.8 \\ \hline 0.8$ width and unbinnedon In the Lite-

The dominant

Variation of the fitted $R \rightarrow D\pi$ in (ton)

$$\mathscr{R}(D^*) = \begin{cases} 0.332 \pm 0.030 & \text{BaBar} \\ 0.336 \pm 0.040 & \text{LHCb} \end{cases}$$

LHCb 2015 $\Re(D^*)$

Challenges to Lepton Flavor Universality from LHCb and the B factories

- ~ Even a 5 σ on $\mathscr{R}(D^{(*)})$ would not be sufficient to convince ourselves of NP
 - Indirect measurement with broad signal **distributions** due to multiple v in final state

Current results

LHCb has a unique ability to study $b \rightarrow c\tau\nu$ transitions because bb production at the LHC hadronizes into all species of b-hadrons

LHCb already published first non- $\mathscr{R}(D^{(*)})$ measurement $\Re(J/\Psi) = 0.71 \pm 0.17 \pm 0.18,$ **1.8σ above SM**

Phys. Rev. Lett. 120, 121801 (2018)

Penguin from <u>Je</u>

4. Neutral LFU results with $b \rightarrow see$ transitions

~ Loop suppresses $SIM_{3.66} \pm B^{-}$ **contribution** $\mathscr{B}(B^0 \rightarrow \mu^+ \mu^-) = (1.03 \pm 10^{-1})$ $\overrightarrow{B}(B^0 \rightarrow \mu^+ \mu^-) = (1.03 \pm 10^{-1})$

 Easier to detect possible BSM physics U

Charged LFU ($b \rightarrow s\ell\ell$ transitions)

Challenges to Lepton Flavor Universality from LHCb and the B factories

Manuel Franco Sevilla

Manuel Franco Sevilla

Figure 35: Electron identification efficiency versus misidentification Challenges to Lepton Flavor Universality from LHCb and the B factories

5. One elegant interpretation

Based on Isidori at APS April 2021 and Cornella, Faroughy, Fuentes-Martín, Isidori, Neubert - arXiv:2103.16558

Penguin from Jeff Brassard

- 1.8 σ excess in $\mathcal{R}(J/\Psi)$
- 14% excess in $\mathscr{R}(D)$
- 14% excess in $\mathscr{R}(D^*)$

Manuel Franco Sevilla

LFU results with $b \rightarrow s \ell \ell$

- 22% deficit in $B_{(s)}^0 \rightarrow \mu^+ \mu^-$
- 15% deficit in \mathcal{R}_{K}
- ~30% deficit in \mathscr{R}_{K^*}

Charged Higgs (H+)

Challenges to Lepton Flavor Universality from LHCb and the B factories

U₁ leptoquark fits all low-energy data

"Renaissance" of LQ models (to explain the anomalies, but not only...):

- Scalar LQ as PNG Gripaios, '10 Gripaios, Nardecchia, Renner, '14 Marzocca '18
- resonances

Barbieri, Murphy, Senia, '17

Which LQ explains which anomaly?

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

Isidori at APS April 2021, arXiv:2103.16558

Scalar LQ from GUTs & R SUSY

Hiller & Schmaltz, '14; Becirevic et al. '16, Fajfer et al. '15-'17; Dorsner et al. '17; Crivellin et al. '17; Altmannshofer et al. '17 Trifinopoulos '18, Becirevic *et al.* '18 +...

• Vector LQ in GUT gauge models

Assad et al. '17 Di Luzio et al. '17 Bordone et al. '17 Heeck & Teresi '18 +...

• Vector LQ as techni-fermion

Barbieri et al. '15; Buttazzo et al. '16,

• LQ as Kaluza-Klein excit. Megias, Quiros, Salas '17 Megias, Panico, Pujolas, Quiros '17 Blanke, Crivellin, '18

$R_{K^{(*)}} \& R_{D^{(*)}}$ $R_{K^{(*)}}$ $R_{D^{(*)}}$ < T₁+2/3 X +2/3X \checkmark X ~ X X x X ~ Х X LQ of the Pati-Salam gauge group: х X $SU(4) \times SU(2)_{L} \times SU(2)_{R}$ Angelescu, Becirevic, DAF, Sumensari [1808.08179]

U₁ leptoquark within reach

Manuel Franco Sevilla

Direct LQ searches at LHC have limited mass reach, but **high p**_T tails in $\tau\tau$ events would have **sensitivity** at HL-LHC

Isidori at APS April 2021,

Slide 35

6. Going forward

Upgrading LHCb

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

Slide 37

Manuel Franco Sevilla

Upstream Tracker (UT)

Ultra-dense board with 28 layers

Slide 38

Manuel Franco Sevilla

Thanks to a great team

Challenges to Lepton Flavor Universality from LHCb and the B factories

Thanks to great students

Manuel Franco Sevilla

~ Delivered UT electronics to CERN, racing to complete UT installation → LHC expected to restart in 2022

Since discrepancies are 15-30%, **precision better than 3%** will resolve the anomalies one way or the other

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

Prospects

- ~ Excesses in decays involving $b \rightarrow c \tau \nu$ transitions $\Rightarrow 3.1\sigma$ significance
- ~ **Deficits** in decays involving $b \rightarrow s\mu\mu$ transitions
 - \rightarrow At least 3.9 σ significant
- ~ U₁ leptoquark could explain both → Within reach at HL-LHC
- Exciting times ahead
 - → LHC still analyzing Runs 1+2 data
 - → Run 3 to start next year with 5x inst. lumi at LHCb
 - Belle II will increase B-factories dataset by 50x

to play a key role in the years to come

Conclusions

Run 3

Run 4 Run 5

Run 2

18

16

14

Challenges to Lepton Flavor Universality from LHCb and the B factories

Backup

Penguin from Jeff Brassard

and fast timing

Manuel Franco Sevilla

Challenges to Lepton Flavor Universality from LHCb and the B factories

Slide 44