University of Maryland

 $\mathscr{R}(D^{(*)})$, $\mathscr{R}_{K^{(*)}}$, and their cousins: update on the continued challenges to lepton flavor universality

5th May 2021

Virtual joint JHU/UMD seminar

~Assume Universe is $SU(3) \times SU(2)_L \times U(1)$ symmetric, put in a few particles, and bam!, most precise and comprehensive theory in the history of mankind

Manuel Franco Sevilla

The SM is pretty good

Anomalous magnetic dipole moment

12,672 diagrams of 10th order

Beyond the SM

Looking in many directions

By Pallab Ghosh Science corresponder

O 7 Apri

Manuel Franco Sevilla

Testing the SM

Machine finds tantalising hints of

~Alas, **no direct** detection yet

Can access mass scales beyond the reach of current particle accelerators through **precision**

tests

→ Flavor physics (study of quark and lepton species) is a key tool

Slide 4

Testing the SM

Manuel Franco Sevilla

~Alas, **no direct** detection yet

Can access mass scales beyond the reach of current particle accelerators through precision

tests

→ Flavor physics (study of quark and lepton species) is a key tool

Slide 4

Lepton Flavor Universality (LFU)

∼ It is assumed that electroweak gauge couplings to 3 fermion generations are identical

Manuel Franco Sevilla

LFU tested to great precision

LFU tests with 1st/2nd gen.

To **0.28%** in Z decays

> To **0.8%** in W decays

To **0.31%** in meson decays

To 0.14% in $\tau \rightarrow \ell \nu \nu$

$\Gamma_{Z \to \mu\mu}$	1 0000 - 0 0028
$\Gamma_{Z \to ee}$	LEP, <u>Phys. Rept. 427 (2006) 257</u>
$\mathscr{B}(W \to \phi)$ $\mathscr{B}(W \to \rho)$	(2ν) (2ν) = 1.004 ± 0.008 (2019) CDF + LHC, JPG: NPP, 46, 2 (2019)
$\frac{\Gamma_{J/\psi \to \mu\mu}}{\Gamma} =$	$= 1.0016 \pm 0.0031$
	DG (BESIII), <u>RPP, Chin. Phys. C40 (2016) 100001</u> (2.488 ± 0.009) × 10^{-5}
$\Gamma_{K \to \mu\nu}$ $\Gamma_{\pi \to e\nu}$	PDG (NA62), <u>RPP, Chin. Phys. C40 (2016) 100001</u> (1 230 + 0 004) \times 10 ⁻⁴
$\Gamma_{\pi \to \mu \nu}$	PiENu, <u>Phys. Rev. Lett. 115, 071801 (2015</u>)

 $g_{\mu}/g_e = 1.0018 \pm 0.0014$ PDG, A. Pich, Prog. Part. Nucl. Phys. 75 (2014) 41

Manuel Franco Sevilla

LFU tests with 3rd gen.

To **0.32%** in Z decays

2.6 σ tension in W decays

> To 1.3% in W decays

 $\frac{\Gamma_{Z \to \tau \tau}}{1} = 1.0019 \pm 0.0032$ $\Gamma_{Z \rightarrow ee}$ LEP, Phys. Rept. 427 (2006) 257 $\frac{\Gamma_{W \to \tau \nu}}{1.070 \pm 0.026}$ $\Gamma_{W \to \mu \nu}$ LEP, Phys. Rept. 532 (2013) 119, $\frac{\Gamma_{W \to \tau \nu}}{1} = 0.992 \pm 0.013$

 $\Gamma_{W \to \mu \nu}$ ATLAS, arXiv:2007.14040

To **6.1%** in D_{s} decays

 $\frac{\Gamma_{D_s \to \tau \nu}}{1} = 9.95 \pm 0.61$ $\Gamma_{D_s \to \mu\nu}$ HFLAV, Eur. Phys. J. C77 (2017) 895

To **0.15%** in $\tau \rightarrow \ell \nu \nu \text{ (with } \tau_{\tau})$

 $g_{\tau}/g_{\mu} = 1.0030 \pm 0.0015$

PDG, S. Pich, Prog. Part. Nucl. Phys. 75 (2014) 41

~ Since 2012, hints of LFU in transitions involving 3rd gen. b quark

Very solid SM predictions with 1-2% uncertainty, established deviations would be clear indications of BSM physics

Manuel Franco Sevilla

 $\mathscr{R}(D^{(*)})$, $\mathscr{R}_{K^{(*)}}$, and their cousins: update on the continued challenges to LFU

B anomalies

Slide 7

Overview of experiments

LFU results with $b \rightarrow c \tau \nu$

- p_R reconstruction
- B-factory and LHCb measurements of $\mathscr{R}\left(D^{(*)}
 ight)$
- Beyond $\mathscr{R}(D^{(*)})$
- Future prospects

Outline

One elegant interpretation

Contributions from several experiments 🖓 👘

Manuel Franco Sevilla

 $\mathcal{O}(10^9) B^{0/+}$ mesons Low uncertainty on absolute rates, 100% ε(trigger), PID, low e-brem, knowledge of collision momentum

B-factories

With $\mathcal{O}(10^8) B^{0/+}$ mesons already competitive search for $B \to K \bar{\nu} \bar{\nu}$ (backup)!

 $\mathcal{O}(10^{11}) B_{(s)}^{0/+}$ mesons Triggers primarily for flavor, PID, VELO, all b-hadron species

LHC

 $\mathcal{O}(10^{12}) B_{(c)}^{0/+}$ mesons **All b-hadron species**

LHC environment is slightly busier

 $pp \to X_b B_s^0 X$ $B_s^0 \rightarrow \mu^+ \mu^-$

LHC pp collisions have background from $b\bar{b}$ hadronization, underlying event, and pileup

> Clean e^+e^- collisions only produce two B mesons (for the most part)

Manuel Franco Sevilla

B-factories

Vertexing and isolation key to LHC

Manuel Franco Sevilla

~ B mesons can fly ~ cm thanks to large boost ~ Excellent trackers in CMS and ATLAS ~ Superb vertexing by VELO in LHCb → Only 8.2 mm from IP, reduced to 5.1 in upgrade Multivariate algorithms ensure tracks isolated Based on track impact parameter, other variables

LFU results with $b \rightarrow c \tau \nu$ transitions

Driginally from BaBa

Leptonic τ

 $\tau^- \to \ell^- \nu_\tau \bar{\nu}_\ell$

Same reco particles as normalization $B \rightarrow D^{(*)} \ell \nu$, many uncertainties cancel on $\mathscr{R}\left(D^{(*)}\right)$

$$\mathscr{R}\left(D^{(*)}\right) = \frac{\mathscr{B}\left(\bar{B} \to D^{(*)}\tau\nu_{\tau}\right)}{\mathscr{B}\left(\bar{B} \to D^{(*)}\ell\nu_{\ell}\right)} = \frac{N_{sig}}{N_{norm}}\frac{\epsilon_{norm}}{\epsilon_{sig}}$$

ε ratio easy, yields are key

Manuel Franco Sevilla

τ reconstruction

p_R reconstruction at the B-factories

B tagging: $p_{B_{sig}} = p_{e^+e^-} - p_{B_{tag}}$ <u>Hadronic</u>: best $\sigma(p_R)$, $\epsilon_{had} \sim 0.2-0.4\%$ <u>Semileptonic</u>: worse $\sigma(p_R)$, $\epsilon_{sl} \sim 0.3-0.6\%$ B^- , $ar{B}^0$ (FEI: bottom-up approach based on BDTs with ϵ_{FEI} up to 3x the corresponding ϵ_{had} or ϵ_{sI}

Belle 2015 $\mathscr{R}(D^{(*)})$, q² distributions

Phys. Rev. D **92**, 072014 (2015)

Similar strategy to BaBar

 \Rightarrow Hadronic B_{tag} , leptonic τ

 \sim Also excess, consistent with BaBar

Manuel Franco Sevilla

p_R reconstruction at LHCb

 $\mathscr{R}(D^{(*)})$, $\mathscr{R}_{K^{(*)}}$, and their cousins: update on the continued challenges to LFU

Manuel Franco Sevilla

Slide 17

Beyond $\mathscr{R}(D^{(*)})$

- ~ Even a 5 σ on $\mathscr{R}(D^{(*)})$ would not be sufficient to convince ourselves of NP
 - Indirect measurement with broad signal distributions due to multiple v in final state
- It will be important to have
 - Confirmation by independent experiments
 - Confirmation in different decays
 - Characterization in kinematic distributions

Belle II and upgraded LHCb both **sensitive** to angular distributions

> Hill, John, Ke, Poluektov, *JHEP* 2019, 133 (2019)

Manuel Franco Sevilla

LHCb has a unique ability to study $b \rightarrow c \tau \nu$ transitions because bb production at the LHC hadronizes into all species of b-hadrons

LHCb already published first non- $\mathscr{R}(D^{(*)})$ measurement $\mathscr{R}(J/\Psi) = 0.71 \pm 0.17 \pm 0.18,$ **1.8σ above SM**

Phys. Rev. Lett. 120, 121801 (2018)

Future prospects for LFU in $b \rightarrow c \tau \nu$

~ Currently, world-averaged $\mathscr{R}(D^{(*)})$ exceeds SM by ~14%

- ~With Belle II and upgraded LHCb, could get uncertainties below 3% in a few years In addition to $\mathscr{R}(D^{(*)})$ and $\mathscr{R}(J/\Psi)$, LHCb has $\mathscr{R}(D^{**})$, $\mathscr{R}(p\bar{p})$, $\mathscr{R}(D_s)$, $\mathscr{R}(D_s)$, and $\mathscr{R}(\Lambda_c)$ ongoing! Even CMS trying to get out a measurement with ingenious trigger strategy

Manuel Franco Sevilla

Data sample up to year

Wherever this ends up, very exciting times ahead!

Bernlochner, MFS, Robinson, Wormser, arXiv:2101.08326

Penguin from Jeff Brass

LFU results with $b \rightarrow see$ transitions

Not as suppressed as leptonic decays, but still rare with $\mathscr{B} \sim 10^{-7}$

Manuel Franco Sevilla

Semileptonic $B_{(s)} \rightarrow H\ell^+\ell^-$ (medium rare)

Slide 26

Precision test strategies

~ Experimental and theoretical uncertainties depend on strategy

Branching fractions

Simpler for LHC (focus on μ), but large theory uncertainties

Angular observables Minimal FF uncertainties, though sensitive to charm loops

Manuel Franco Sevilla

<u>**LFU ratios</u>** $\mathscr{R}_{H_s} = \frac{\mathscr{B}(H_b \to H_s \mu \mu)}{\mathscr{B}(H_b \to H_s ee)}$ </u>

Theory uncertainty of ~1%, but electrons harder at the LHC

Differential BF rates

~ First measurements of $B \to K^{(*)} \ell \ell$ at Tevatron and the B-factories - Consistent with expectations though large uncertainties

.9 Martuel Franco Sevilla m_{κπ} (GeV/c²)

 $\mathscr{R}(D^{(*)})$, $\mathscr{R}_{K^{(*)}}$, and their cousins: update on the continued challenges to LFU

Deficit in LHCb measurements with muons at low q²

P'_5 and $Q_{4,5}$ in $B \to K^* \ell \ell$

$$\sim \text{Measured all isospin variants for } \mathscr{R}_{K^{(*)}} = \frac{\mathscr{B}(B \to K^{(*)}\mu\mu)}{\mathscr{B}(B \to K^{(*)}ee)}$$

$$\sim \text{Fit } M_{bc} = \sqrt{E_{\text{beam}}^2 - p_B^2}$$

$$\quad \cdot \mathscr{R}_{K} \text{ also fits NN and } \Delta E = E_B - E_{\text{beam}}, \mathscr{R}_{K^*} \text{ cuts on them}$$

$$\quad \sim \text{Similar mass resolution for } \mu \text{ and } e$$

$$\quad \cdot \text{Powerful check with } B \to J/\psi(\to \ell\ell) K^{(*)}$$

$$r_{J/\psi}^{K} = \frac{\mathscr{R}[B \to K J/\psi(\to \mu\mu)]}{\mathscr{R}[B \to K J/\psi(\to ee)]} = 0.994 \pm 0.015 \quad r_{J/\psi}^{K^*} = \frac{\mathscr{R}[B \to K^* J/\psi(\to \mu\mu)]}{\mathscr{R}[B \to K^* J/\psi(\to ee)]} = 1.015 \pm 0.045$$

$$\frac{\varphi^{0^{0^{-1}}}_{gam}} = \frac{\mathscr{R}(B^+ \to J/\psi(K^+) = (1.032 \pm 0.025) \times 10^{-3}}{\mathscr{R}(B \to J/\psi) K^*}$$

LFU $\mathscr{R}_{K^{(*)}}$ at LHCb: bkgs & signal shape $\overset{\sim}{\gg}$

Manuel Franco Sevilla

nds reduced with

- variant masses, eg $m(K^+e) > m(D^0)$ classifiers
- orial and partially-reco bkgs free in fit

$\sim B \rightarrow K^{(*)} J/\psi(\rightarrow \ell\ell)$ contamination from

~ Signal shapes taken from simulation

Small corrections obtained from clean $B \to K^{(*)}J/\psi(\to \ell\ell)$

Slide 34

 $\mathscr{R}(D^{(*)})$, $\mathscr{R}_{K^{(*)}}$, and their cousins: update on the continued challenges to LFU

Slide 35

One elegant interpretation

Based on Isidori at APS April 2021 and Cornella, Faroughy, Fuentes-Martín, Isidori, Neubert - arXiv:2103.16558

Penguin from Jeff Brassard

- 1.8 σ excess in $\mathcal{R}(J/\Psi)$
- 14% excess in $\mathscr{R}(D)$
- 14% excess in $\mathscr{R}(D^*)$

LFU results with $b \rightarrow s \ell \ell$

- **Deficit** in differential BF rates with μ
- 22% deficit in $B_{(s)}^0 \rightarrow \mu^+ \mu^-$
- 15% deficit in \mathcal{R}_{K}
- ~30% **deficit** in \mathcal{R}_{K^*}

- Disagreement in $B \rightarrow K^* \ell \ell$ angular P'_5

~ **Dimension-6 operators** identified as relevant set for combined explanation of both anomalies

$$\mathcal{L}_{b \to s\,\ell^+\ell^-} = \frac{4G_F}{\sqrt{2}} \, V_{ts}^* V_{tb} \, \sum_i \, \mathcal{C}_i^\ell \, \mathcal{O}_i^\ell$$

K(*) B

Easy and "clean"

Four-quark operators: $\mathcal{O}_2 = (\bar{s}_L \gamma_\mu b_L) (\bar{c}_L \gamma_\mu c_L)$

Manuel Franco Sevilla

 $\mathsf{EFT} \ \mathsf{for} \ b \to \mathcal{SCC}$

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma^\mu q_L^j)$$

 $\mathcal{O}_{LR}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{e}_R^\beta \gamma^\mu d_R^j)$

 $\mathcal{O}_{RR}^{ij\alpha\beta} = (\bar{d}_R^i \gamma_\mu e_R^\alpha) (\bar{e}_R^\beta \gamma^\mu d_R^j)$

arXiv:2103.16558

Separate NP contributions between **Lepton Flavor Universal**

$$\Delta C_{9,10}^U \equiv C_{9,10}^e - C_{9,10}^{SM}$$

and LFU-breaking $\Delta C_{9,10}^{\mu} \equiv C_{9,10}^{\mu} - C_{9,10}^{e} = C_{9,10}^{\mu} - (C_{9,10}^{SM} + \Delta C_{9,10}^{U})$ **Difficult and** Induce ΔC_{0}^{U} but no LFU breaking terms

• $(\mathscr{R}_{K^{(*)}})$ or axial-current contributions $(B_s^0 \rightarrow \mu^+ \mu^-)$

 $\mathscr{R}(D^{(*)})$, $\mathscr{R}_{K^{(*)}}$, and their cousins: update on the continued challenges to LFU

EFT fits for $b \rightarrow s \ell \ell$

scaling with fermion generation

Isidori at APS April 2021,

remarkably consistent results

Manuel Franco Sevilla

$b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

Isidori at APS April 2021,

U₁ leptoquark fits all low-energy data

- Gripaios, '10 Marzocca '18

resonances

Manuel Franco Sevilla

U₁ leptoquark within reach

Manuel Franco Sevilla

Direct LQ searches at LHC have limited mass reach, but **high p**_T tails in $\tau\tau$ events would have **sensitivity** at HL-LHC

Also, $b \rightarrow d\mu\mu$, $b \rightarrow s\tau\tau$, $b \rightarrow s \tau \mu$, B_s mixing, $b \rightarrow s \nu \nu, \tau \rightarrow \mu \mu \mu$

Isidori at APS April 2021,

- ~Excesses in decays involving $b \rightarrow c \tau \nu$ transitions \Rightarrow 3.1 σ significance
- ~ Deficits in decays involving $b \rightarrow s\mu\mu$ transitions
 - → At least 3.9σ significant
- ~ U₁ leptoquark could explain both → Within reach at HL-LHC
- Exciting times ahead
 - → LHC still analyzing Runs 1+2 data
 - → Run 3 to start next year with 5x inst. lumi at LHCb
 - Belle II will increase B-factories dataset by 50x
 - → HL-LHC will increase current dataset by 100x

Conclusions

18 16 uncertainty [%] 1410 Total ı Optimistic Data sample up to year 0.25tainty 0.50 Ŭ 0.15 ed Projecte 0.050.002025 2020 2015

Run 2

Run 3

Run 4 Run 5

 $\mathscr{R}(D^{(*)})$, $\mathscr{R}_{K^{(*)}}$, and their cousins: update on the continued challenges to LFU

2030

Year

