Electroweak penguin anomalies

Manuel Franco Sevilla on behalf of the ATLAS, Belle (II), CMS, and LHCb collaborations University of Maryland

<u>19th April 2021</u>

APS April Meeting Minisymposium on Precision Measurements with Leptons

 \sim Decays with a $b \rightarrow s\ell^+\ell^-$ transition are heavily suppressed in the SM → FCNC proceeds via loop diagrams → BFs < 10⁻⁶

contributions

Manuel Franco Sevilla

Why penguins (and boxes)

Contributions from several experiments

Manuel Franco Sevilla

 $\mathcal{O}(10^9) B^{0/+}$ mesons Low uncertainty on absolute rates, 100% ε(trigger), PID, low e-brem, knowledge of collision momentum

B-factories

 $\mathcal{O}(10^8) B^{0/+}$ mesons now!

 $\mathcal{O}(10^{11}) B_{(s)}^{0/+}$ mesons Triggers primarily for flavor, PID, VELO, all b-hadron species

LHC

 $B_{(r)}^{0/+}$ mesons $\mathcal{O}(10^{12})$ **All b-hadron species**

Penguin from Jeff Brassard

Manuel Franco Sevilla

Outline

Purely leptonic
$$B_{(s)}^{0} \rightarrow \ell^{+}\ell^{-}$$

Fresh!
 $\rightarrow B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}, B_{(s)}^{0} \rightarrow \tau^{+}\tau^{-}, B_{(s)}^{0} \rightarrow e^{+}$

Semileptonic $B_{(s)} \to H\ell^+\ell^-$

- Search for $B \to K^+ \nu \bar{\nu}$ Fresh'
- Differential BF rates
- $-B \rightarrow K^* \ell \ell \text{ angular observables}$

- LFU ratios $\mathscr{R}_{K^{(*)}}$

APS Ap

 $\sim m_{\mu^+\mu^-}$ Entering era of $B_s^0 \to \mu^+\mu^$ precision measurements

~ Getting close to $B^0 \rightarrow \mu^+ \mu^-$

~ Far from SM predictions for taus and electrons, but NP could enhance rates

$$\mathscr{B} \left(B_s^0 \to \tau^+ \tau^- \right)_{\text{SM}}$$
$$\mathscr{B} \left(B^0 \to \tau^+ \tau^- \right)_{\text{SM}}$$

and $B_{(x)}^{U}$

Semileptonic $B_{(s)} \rightarrow H\ell^+\ell^-$

Medium rare: $\mathscr{B} \sim 10^{-7}$

$q^2 \equiv m\left(\ell^+\ell^-\right)$

 $\sim b \rightarrow s\ell^+\ell^-$ transitions can also be studied in semileptonic decays → Not as suppressed, but still rare with BF ~ 10-7

Branching fractions

Simpler for LHC (focus on μ), but large theory uncertainties

Minimal FF uncertainties. though sensitive to charm loops

$B \rightarrow K^{(*)}\ell\ell$ and cousins

Angular observables

<u>LFU ratios</u> $\mathscr{R}_{H_s} = \frac{\mathscr{B}(H_b \to H_s \mu \mu)}{\mathscr{B}(H_b \to H_s ee)}$

Theory uncertainty of $\sim 1\%$, but electrons harder at the LHC

Search for $B \to K^+ \nu \bar{\nu}$ from Belle

Differential BF rates

~ First measurements of $B \to K^{(*)} \ell \ell$ at Tevatron and the B-factories Consistent with expectations though large uncertainties

Manuel Franco Sevilla m_ĸ" (GeV/c²)

LHCb measurements with muons below SM at low q^2

APS April meeting 2021: Electroweak penguin anomalies

P'_5 and $Q_{4,5}$ in $B \to K^* \ell \ell$

\sim Measured all isospin variants for \mathcal{S}
$\Rightarrow K^{+}, K_{S}^{0}, K^{*+} (\rightarrow K^{+}\pi^{0}, K_{S}^{0}\pi^{+}), K^{*0} (\rightarrow K^{+}\pi^{0}, K_{S}^{0}\pi^{+}), K^{*0} (\rightarrow K^{+}\pi^{0}, K^{*0}) (\rightarrow K^{+}\pi^{0}) (\rightarrow K^{+}\pi^{$
~ Fit $M_{bc} = \sqrt{E_{\text{beam}}^2 - p_B^2}$
• \mathscr{R}_K also fits NN and $\Delta E = E_B - E_{beam'} \mathscr{R}_K$
\sim Similar mass resolution for μ and
~ Powerful check with $B \rightarrow J/\psi(\rightarrow$
$r_{J/\psi}^{K} = \frac{\mathscr{B}\left[B \to K \ J/\psi(\to \mu\mu)\right]}{\mathscr{B}\left[B \to K \ J/\psi(\to ee)\right]} = 0.994 \pm 0.015 \qquad r_{J/\psi}^{K*} = \frac{\mathscr{B}}{\mathscr{B}}$ $\underbrace{\text{JHEP 03, 105 (2021)}}$
Aside: most precise $\mathscr{B}(B^+ \to J/\psi K^+)$ $\mathscr{B}(B \to J/\psi K)$ in the $\mathscr{B}(B^0 \to J/\psi K^0)$ world, just added to PDG $\mathscr{B}(B^0 \to J/\psi K^0)$

arXiv:1904.02440

$$= (1.032 \pm 0.025) \times 10^{-3}$$
$$= (0.902 \pm 0.028) \times 10^{-3}$$

LFU $\mathscr{R}_{K^{(*)}}$ at LHCb: bkgs & signal shape

 $B^0 \rightarrow K^{*0} e e$

LHCb $\dots B^0 \rightarrow K^{*0} e^+ e^-$ Combinatorial $B \rightarrow Xe^+e^ B^0 \rightarrow K^{*0} J/\psi$ $.1 < q^2 < 6.0 [\text{GeV}^2/c^4]$ 6000 5500 $m(K^{+}\pi^{-}e^{+}e^{-})$ [MeV/*c*²] resonant fit

Manuel Franco Sevilla

nds reduced with

- variant masses, eg $m(K^+e) > m(D^0)$ classifiers
- orial and partially-reco bkgs free in fit

$\sim B \rightarrow K^{(*)} J/\psi(\rightarrow \ell\ell)$ contamination from

~ Signal shapes taken from simulation

Small corrections obtained from clean $B \to K^{(*)}J/\psi(\to \ell\ell)$

Slide 19

Slide 20

$\sim b \rightarrow s\ell^+\ell^-$ transitions are excellent probes of NP No time to cover, but also - Large $b\bar{b}$ samples at LHC are key $\mathscr{R}_{pK}^{[0.1,6]} = \frac{\Lambda_b^0 \to pK^- \mu \mu}{\Lambda_b^0 \to pK^- ee} = 0.86^{+0.14}_{-0.11}$ B-factories measurements very important too JHEP 2020, 40

- ~ Rates involving muons seem systematically low
 - Individual 2-3σ results, but global fit to clean observables over 4 significance deviation
- Exciting times ahead
 - → LHC still analyzing Runs 1+2 data
 - → Run 3 to start next year with 5x inst. lumi at LHCb
 - → Belle II will increase B-factories dataset by 50x
 - → HL-LHC will increase current dataset by 100x

Conclusions

Backup

Penguin from Jeff Brassard

~ Enough overlap between rare as to check $r_{Ibir}^{K^{(*)}} = \frac{B \to K^{(*)} J/\psi(-x)}{-x}$ $B \rightarrow K^{(*)} J/\psi(-$ JΨ

arXiv 2103.11769

\mathcal{R}_{K^+} at LHCb: ϵ validation

and resonant

$$\rightarrow \mu\mu$$
)
 $\rightarrow ee$)

- Compare the Bremsstrahlung categories between data and simulation
- Compare kinematic distribution obtained from backgroundsubstracted data and simulation

$\mathcal{R}_{K^{*0}}$ at LHCb

$\rightarrow \mu^+\mu^-$: LHCb_{B0} $\rightarrow K^+\pi^-$

LHCb upgrades

Slide 29

Some $\mathscr{R}(K^{(*)})$ measurements

arXiv	Observable	Exper.	Lumi [fb ⁻¹]	Journal
<u>2103.11769</u>	RK+	LHCb	9	Sub. to Nature 17/03/2021
<u>2012.13241</u>	Angular K*+µµ	LHCb	9	Accepted by PRL 11/03/2021
<u>2003.04831</u>	CP-averaged K*0µµ	LHCb	4.7	Phys. Rev. Lett. 125, 011802 (2020)
<u>1912.08139</u>	RpK	LHCb	4.7	JHEP 2020, 40 (2020)
<u>1908.01848</u>	RK0 and RK+	Belle	711	BELLE-CONF-1904, Belle Preprint 2020-
<u>1904.02440</u>	RK*0 and RK*+	Belle	711	Sub. to PRL 29/09/2020
<u>1903.09252</u>	RK+	LHCb	5	Phys. Rev. Lett. 122 (2019) 191801
<u>1705.05802</u>	RK*0	LHCb	3	JHEP 08 (2017) 055
<u>1612.05014</u>	Angular K*ll	Belle	711	Phys. Rev. Lett. 118, 111801 (2017)
<u>1512.04442</u>	Angular K*0µµ	LHCb	3	JHEP 02 (2016) 104
<u>1506.08777</u>	Angular/BF Bs→φµµ	LHCb	3	JHEP 09 (2015) 179
<u>1406.6482</u>	RK+	LHCb	3	Phys. Rev. Lett. 113, 151601 (2014)

