LHCb upgrades and prospects for charged Lepton Universality Violation

Manuel Franco Sevilla University of Maryland

14th October 2020 Virtual UMD High energy and astrophysics seminar

~LHCb upgrades → Upgrade I (2019-2021) Pixel Vertex Locator Upstream Tracker → Upgrade Ib (2025-27) and II (2031)

Manuel Franco Sevilla

Outline

~ Prospects for charged Lepton Universality Violation (LUV) at LHCb

- Features of current $b \rightarrow c \tau \nu$ measurements at LHCb
- → Possible **precision** on $\mathscr{R}(X_c)$
- Measuring kinematic distributions

Slide 2

The LHCb experiment

~ GPD with focus on **flavor physics**

- \Rightarrow 25% of $b\bar{b}$ production with 4% of solid angle $(2 \leq \eta \leq 5)$
- 100k b-hadrons produced every second

Excellent secondary vertex reconstruction **~ PID**: *π*, K, p, μ

If there is no other option **Photon**

Neutral hadron

Electron

Charged hadron —

High precision

Magnet T-layers RICH2 ECALHCAL **VELO RICH1 TT** stations

LHCb has demonstrated emphatically that the LHC is an ideal laboratory for flavor physics

First CPv in charm sector Most precise measurement of φ_s Candidates / ($2.8 \text{ MeV}/c^2$) $\Delta \Gamma_s [p_{\rm s}^{-1}]$ 0.5 LHCb Data HFLAV $^{\prime}$ D0 8 fb $^{-1}$ $D^0 \rightarrow \pi^- \pi^+$ Spring 2019 0.45 68% CL contours $----- D^0 \to K^- \pi^+$ $(\Delta \log \mathcal{L} = 1.15)$ 0.12 $D^0 \to \pi^- l^+ \nu_1$ 0.4 R(D*) CMS 19.7 fb⁻¹ ---- Combinatorial 0.35 0.10 CDF 9.6 fb⁻¹ 0.3E HCb 4.9 fb⁻ 0.08 0.25 ATLAS 99.7 fb 0.06 1950 1900 1800 1850 $m(\pi^{-}\pi^{+})$ [MeV/ c^{2}] -0.4 -0.2 -0.0 0.2 0.4 *Phys. Rev. Lett.* **122**, 211803 (2019) $\phi_s^{c\bar{c}s}[\mathrm{rad}]$

Vertexing and tracking are the cornerstones of these results

0.2

Manuel Franco Sevilla

LHCb upgrades and prospects for charged Lepton Universality Violation

Hugely successful Runs 1 and 2

R(D*) from $\mathbf{B} \rightarrow \mathbf{D}^* \tau \mathbf{v}$

Belle, Moriond EW (2019)

-SM predictions

0.4

R(D)

-BaBar, PRL **109**, 101802 (2012)

Belle, PRD 92, 072014 (2015)

- HFLAV average Spring 2019

-LHCb, PRL **120**, 171802 (2018)

3σ

0.3

Limitations of LHCb

~ Limitations for higher luminosity of 2011-2018 detector

- Low efficiency for hadronic decays at higher lumi due to hardware trigger
- Overall performance degrades quickly for high occupancy
- → Radiation hardness of trackers

luminosity leveling

Data sample limited to

Slide 5

Upgrade I

Manuel Franco Sevilla

LHCb upgrades and prospects for charged Lepton Universality Violation

Upgrade I

Slide 7

Pixel VELO overview

Manuel Franco Sevilla

LHCb upgrades and prospects for charged Lepton Universality Violation

~ In vacuum as close to IP as possible

- Crucial for vertexing and tracking

	VELO	Pixel VELO
ears of operation	2010 – 2018	2022 – 2030
ensors	173k R-φ	41M pixels
Jumber of layers	23	26
Distance from IP	8.2 mm	5.1 mm
[luence _{max} [1 MeV n _{eq} cm ⁻²]	4.3×10 ¹⁴	8×10 ¹⁵
IV Tolerance	500 V	1000 V
SIC Readout	1 MHz	Data driven
Data Rate	~150 Gb/s	2.8 Tb/s
ower	~0.8 kW	~1.6 kW
Operating temp.	-8°C	-25°C

LIVERSITY OF

Universidade Federal DO RIO DE JANEIRO

Pixel VELO overview

Manuel Franco Sevilla

New RF foil

Milled from Aluminum block Beautiful video

Manuel Franco Sevilla

LHCb upgrades and prospects for charged Lepton Universality Violation

Chemical etching the innermost region with NaOH

Manuel Franco Sevilla

~200 µm-thick silicon sensor

- → n-in-p built by HPK
 - ◆ Lifetime fluence of 8×10¹⁵ 1 MeV n_{eq}/cm², 400 Mrad
- → 768×256 pixels, each 55×55 µm²

Three VeloPix ASICs per sensor (tile)

- → Thinned to 200 µm, 130 nm CMOS technology
- Each bump-bonded to 256×256 pixels
- → 400 Mrad and SEU tolerant
- Readout of every hit
 - ◆ 800 Mhits/s → 50 khits/s/pixel
- → Up to four output lines at 5.12 Gbps each
- Power consumption < 2 W</p>

Slide 11

Manuel Franco Sevilla

LHCb upgrades and prospects for charged Lepton Universality Violation

Readout electronics

Micro-channel cooling

LHCb upgrades and prospects for charged Lepton Universality Violation

Manuel Franco Sevilla

Minimal material budget!

Cooling integration and performance

CO₂ pipes soldered to metallization on micro-channels

Leak tight, keep planarity, pressure up to 186 bar

- overhang

Manuel Franco Sevilla

Upstream Tracker (UT)

UT overview

Manuel Franco Sevilla

Placed between VELO and dipole magnet

- Crucial for triggering and long-lived particle reconstruction

~4 layers of silicon strips with same

- arrangement as TT
- → Vertical/stereo layers provide x-y position
- Improved performance
 - → 40 MHz readout
 - → Finer granularity
 - + Close to the beam 187.5 μ m pitch -> 93.5 μ m
 - Larger coverage (closer to beampipe)
 - Reduced material budget

Silicon sensors

Sensor	Туре	Pitch	Length	Strips
А	p-in-n	187.5 µm	99.5 mm	512
В	n-in-p	93.5 µm	99.5 mm	1024
С	n-in-p	93.5 µm	50 mm	1024
D	n-in-p	93.5 µm	50 mm	1024

Manuel Franco Sevilla

LHCb upgrades and prospects for charged Lepton Universality Violation

~ Optimization with 4 designs

- → Outer region with p-in-n, 187.5 µm pitch

Embedded pitch adapters

→ Inner region with n-in-p, 93.5 µm pitch Radiation-hard and good granularity

Circular cutout near the beamline

Slide 17

Integration into stave

Modules (hybrids + wirebonded ASICs + sensors) and flex cables are mounted onto a stave

- Low-mass support of 1.6 m x 10 cm
- Overlap between sensors on the front and back
- → Integrated **titanium pipe** for **CO**₂ **cooling**

Stave Flex cable Hybrid + ASICs Sensor

> **Stencil** application of TIM, epoxy, silicone pedestal

Manuel Franco Sevilla

Heat TIM, place module, overnight curing

Another module on the stave!

Peripheral electronics (PEPI)

- ~ Backplane distributes balanced load to DCBs
- ~ DCBs optically send data to LHCb DAQ
 - → Bandwidth: 248 DCBs × 3 VTTx/DCB × 2 links/VTTx × 4.8 Gb/s = 7.1 Tb/s
 - → Also control system via VTRx
 - Each **DCB** (Data Control Board) has 7 GBTx (rad-hard serdes ASIC), **3 VTTx** (twin optical transmitter), and 1 VTRx (optical TX/RX)

Manuel Franco Sevilla

- ~ A flexible pigtail cable connects the stave to PEPI

Due to space constraints, **backplane** ended up being an ultra-dense board with 28 layers at the limit of manufacturability

Manuel Franco Sevilla

UT integration

A piece of the Free state in LHCb

Manuel Franco Sevilla

Scintillating Fibers (SciFi)

- - → Readout with SiPMs
 - → Fibers 250 µm, **80 µm resolution** with CoM fit

stations m 4 planes x

Manuel Franco Sevilla

~ Replace straw tubes and silicon Outer Tracker

Slow drift time of tubes limit occupancy

~ 12 layers of scintillating fibers

The best LHCb yet

~ Not only able to withstand 50 fb⁻¹ and 40 MHz readout, but also

Better 3D impact parameter resolution

- Translates to improvements of 10-15% in the B decay time resolution
- → Better p_T resolution
- Dramatic reduction of ghost rate

~SW trigger very flexible → if you can reconstruct it offline, you can trigger on it!

Will open up possibilities not yet thought of

Speed-up makes SW trigger possible

Slide 24

CERN/LHCC 2017-003 _HCb Eol)8 February 2017

LHCb UPGRADE II

Opportunities in flavour physics, and beyond, in the HL-LHC era

Expression of Interest

Proposed Upgrades Ib and II

and fast timing

Manuel Franco Sevilla

Upgrades

LHCb upgrades and prospects for charged Lepton Universality Violation

Slide 26

LHCb upgrades and prospects for charged Lepton Universality Violation

Man

Upgrade lb possibilities

Slide 27

VELO, ECAL upgrades

Manuel Franco Sevilla

Exquisite precision in all kinds of land dmark flavor measurements

3

0.7

prospects for charged Lepton Universality Violation

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN

CERN-LHCC-2018-027 LHCB-PUB-2018-009 27 August 2018

Prospects for charged LUV at LHCb

Originally from BaBar

Lepton universality

Fundamental assumption within the SM: The interactions of all charged leptons (electrons, muons, and taus) differ only because of their different masses

~ By measuring ratios, theoretical/experimental uncertainties greatly cancel

Charged LUV with $b \rightarrow c \sigma \nu'$ $\mathscr{R}\left(D^{(*)}\right) = \frac{\mathscr{R}\left(\bar{B} \rightarrow D^{(*)}\tau\nu_{\tau}\right)}{c}$ with $b \rightarrow c \tau \nu$

LHCb upgrades and prospects for charged Lepton Universality Violation

 $\mathscr{B}\left(\bar{B}\to D^{(*)}\mu\nu_{\mu}\right)$

Manuel Franco Sevilla

$$\mathscr{R}\left(K^{(*)}\right) = \frac{\mathscr{B}\left(\bar{B} \to K^{(*)}\mu^{+}\mu^{-}\right)}{\mathscr{B}\left(\bar{B} \to K^{(*)}e^{+}e^{-}\right)} \quad \mathbb{R}\left(\bar{B} \to K^{(*)}e^{+}e^{-}\right) \quad \mathbb{R}\left(\bar{B} \to K^{(*)}e^{+}e^{-}\right)$$

	1		$\mathbf{T}(\mathbf{D})$	[07]	[07]	$\mathcal{T}(\mathcal{D}^*)$	[07]	[07]	
Experiment	au decay	Tag	$\mathcal{K}(D)$	$\sigma_{ m stat}$ [%] c	$\sigma_{\rm syst}$ [%]	$\mathcal{K}(D^{+})$	$\sigma_{ m stat}$ [%]	$\sigma_{ m syst}$ [%]	$ ho_{ m stat}/ ho_{ m syst}/ ho_{ m tot}$
$BABAR^{a}$	$\mu u u$	Had.	$0.440 \pm 0.058 \pm 0.042$	13.1	9.6	$0.332 \pm 0.024 \pm 0.018$	7.1	5.6	-0.45/-0.07/-0.3
$Belle^{b}$	$\mu u u$	Semil.	$0.307 \pm 0.037 \pm 0.016$	12.1	5.2	$0.283 \pm 0.018 \pm 0.014$	6.4	4.9	-0.53/-0.51/-0.5
$\operatorname{Belle}^{\operatorname{c}}$	$\mu u u$	Had.	$0.375 \pm 0.064 \pm 0.026$	17.1	7.1	$0.293 \pm 0.038 \pm 0.015$	13.0	5.2	-0.56/-0.11/-0.5
Belle ^d	πu	Had.			_	$0.270 \pm 0.035^{+0.028}_{-0.025}$	13.0	$+10.3 \\ -9.3$	
$\mathrm{LHCb}^{\mathrm{e}}$	$\pi\pi\pi u$				—	$0.280 \pm 0.018 \pm 0.029$	6.4	10.4	_
$\mathrm{LHCb}^{\mathrm{f}}$	$\mu u u$				—	$0.336 \pm 0.027 \pm 0.030$	8.0	8.9	—
$\mathbf{Average}^{\mathrm{g}}$			$0.340 \pm 0.027 \pm 0.013$	7.9	3.8	$0.295 \pm 0.011 \pm 0.008$	3.7	2.7	-0.39/-0.34/-0

Manuel Franco Sevilla

measurements

~ Significant deviation in $\mathscr{R}(D^{(*)})$ from SM

Measurements from BaBar, Belle, and LHCb

Is LHCb systematics limited already?

→ No! Let's see how

- ~ Even a 5 σ on $\mathscr{R}(D^{(*)})$ would not be sufficient to convince ourselves of NP
 - Indirect measurement with broad signal distributions due to multiple v in final state
- It will be important to have
 - Confirmation of decay rate anomalies by independent experiments
 - Confirmation of decay rate anomalies in different decays
 - Characterization of anomalies in **kinematic distributions**

q² is the invariant mass of the *v* system

MFS "Evidence for an excess of $B \rightarrow D^{*+} \tau \nu$ decays "Dissertation, Stanford University (2012)

Manuel Franco Sevilla

Characterizing an anomaly

LHCb has a unique ability to study $b \rightarrow c \tau \nu$ transitions because bb production at the LHC hadronizes into all species of b-hadrons

LHCb already published first non- $\mathscr{R}(D^{(*)})$ measurement $\Re(J/\Psi) = 0.71 \pm 0.17 \pm 0.18$

Measuring $\mathscr{R}(D^{(*)})$ in B-factories

Reconstruct full event with B-tagging

Reconstructed particles Same visible final state for signal/normalization when $\tau^- \to \ell^- \nu_\tau \bar{\nu}_\ell$ used

 $m_{miss}^{2} = \left(p_{e^{+}e^{-}} - p_{B_{tag}} - p_{D^{(*)}} - p_{\ell}\right)^{2}$

Normalization (1 neutrino)

 $B \rightarrow D^{(*)} \ell \nu$

Signal (3 neutrinos)

$$B \to D^{(*)} \tau \left(\to \ell \nu \bar{\nu} \right) \bar{\nu}$$

Manuel Franco Sevilla

LHCb environment is slightly busier

 $pp \to X_b B_s^0 X$ $B_s^0 \to \mu^+ \mu^-$

B-factory advantages Lower backgrounds Collision momentum known Neutrals and electron reco

LHCb advantages Higher statistics All b-hadron species Larger boost

Manuel Franco Sevilla

 $e^+e^- \rightarrow B^+_{tag} B^-_{sig}$ $B^- \rightarrow \rho^0 \mu^- \nu_\mu$

Manuel Franco Sevilla

Vertexing and isolation

- Superb vertexing by VELO (in vacuum)
 - → Only 8.2 mm from IP, 300 µm of material
 - → Reduced to 5.1 mm from IP, 150 µm of material in upgrade
- ~ B mesons fly several cm thanks to large boost
- ~ Developed isolation BDT for $\mathscr{R}(D^*)$ measurement
 - Assign probability of track coming from B vertex
 - \rightarrow IPX²_{PV}, IPX²_B, p_T, track angle, refitted B vertex with track

~ B-factories effectively reconstruct $p_{B_{sig}}$ with B-tagging

 $\Rightarrow p_{B_{sig}} = p_{e^+e^-} - p_{B_{tag}} \text{ allows you calculate } p_{miss} = p_{B_{sig}} - p_{D^{(*)}} - p_{\ell}$

~LHCb estimates $p_{X_{h}}$ with RFA - Good approximation thanks to large X_b boost

Manuel Franco Sevilla

Proof of concept measurement in 2015 Not clear if possible beforehand!

~ 3D simultaneous fit to q^2 , m_{miss}^2 , and E_u^*

$$\mathcal{R}(D^*) = \frac{\mathcal{B}\left(\bar{B} \to D^* \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \to D^* \mu \nu_{\mu}\right)}$$

Slide 38

Manuel Franco Sevilla

Muonic $\mathscr{R}(D^{*+})$ systematics

Contribution	Uncert. [%]	ra Hi
Simulated sample size	6.2	fas
Misidentified μ bkg.	4.8	Da
$\overline{B} \to D^{**}(\ell^-/\tau^-)\overline{\nu}$ bkg.	2.1	to
Signal/norm. FFs	1.9	Pr
Hardware trigger	1.8	Di
DD bkg.	1.5	Pr
MC/data correction	1.2	_
Combinatorial bkg.	0.9	Pr
PID	0.9	
Total systematic	8.9	
Total statistical	8.0	
Total	12.0	

Manuel Franco Sevilla

LHCD

- Sim gives a factor of 10×, which only covers Run 2 efully will scale with data, but it will require faster FastSim, er hardware progress, or more restrictive generator cuts
- driven procedure developed for $\mathscr{R}(J/\Psi)$ will reduce it ss than 2% in updated measurement
- arily data driven
- ppears in Run 3 arily data driven

Note that only 30% of the systematic uncertainty is multiplicative, so the majority does not scale with central value

arily data driven

Generally, systematic uncertainties will come down with data, but there will probably be a **0.5-3% systematics floor** from the extrapolations to signal region and certain assumptions

Muonic $\mathcal{R}(J/\Psi)$

Manuel Franco Sevilla

Hadronic* $\mathcal{R}(D^{*+})$

Manuel Franco Sevilla

Hadronic* $\mathscr{R}(D^{*+})$ systematics

*Actually, the $\tau^- \rightarrow \pi^+ \pi^- \pi^- \nu_{\tau}$ decay is semileptonic

Manuel Franco Sevilla

systematic uncertainties

due to dependence from

Contribution

DD bkg.

Simulated sample size

MC/data correction

 $\overline{B} \to D^{**}(\ell^-/\tau^-)\overline{\nu}$ bkg.

Trigger

PID

Signal/norm. FFs

Combinatorial bkg.

 τ decay

Total systematic

 $\mathcal{B}(B \to D^* \pi \pi \pi)$

 $\mathcal{B}(B \to D^* \mu \nu)$

 $\mathcal{B}(\tau^+ \to 3\pi\nu)/\mathcal{B}(\tau^+ \to 3\pi\pi^0\nu)$

Total external Total statistical Total

Arbitrary units

Muonic vs Hadronic t decay

Dominated by systematics, but will scale with data for the most part

Muonic $\mathcal{R}(D^{*+})$	Uncert. $[\%]$
Total systematic	8.9
Total statistical	8.0
Total	12.0

Systematics floor probably 0.5-3%

Muonic $\mathcal{R}(J/\Psi)$	Uncert. $[\%]$
Total systematic	25.4
Total statistical	23.9
Total	34.9

Systematics floor 1-5% due to FFs

LHCb Simulation 0.04 ~28% FWHM and 0.02 long tail -0.4 -0.2 0 0.2 0.4 0.6 0.8 q² resolution *Phys. Rev. Lett.* **115**, 111803 (2015)

Muonic decays of τ allow for **precise** determinations of $\mathscr{R}(X_c)$ at higher stats

Manuel Franco Sevilla

~ Run 1 measurements show key features of future LHCb LUV possibilities

Note that the majority of the uncertainty does not scale with central value

 $\mathscr{R}(X_c)$ precision with hadronic decays of τ may be limited by external measurements

But may allow for **better** measurements of kinematic distributions

- Analyses at an advanced stage
 - → Run 1 muonic $\mathscr{R}(D^0) \mathscr{R}(D^*)$
 - → Hadronic $\mathscr{R}(D^{**})$

 B^{\vee}, B^+

 $B_{\rm s}^0$

 B_c^+

 Λ_{h}^{0}

- \sim Analyses in early to very early stages primarily using Run 2 → Run 2 muonic $\mathscr{R}(D^0) - \mathscr{R}(D^*)$, muonic $\mathscr{R}(D^+) - \mathscr{R}(D^{*+})$ → Run 2 hadronic $\mathscr{R}(D^{*+})$, hadronic $\mathscr{R}(D^{0}) - \mathscr{R}(D^{*})$, hadronic $\mathscr{R}(D^{+}) - \mathscr{R}(D^{*+})$

 - Muonic $\mathscr{R}(p\bar{p})$
 - Hadronic $B \rightarrow D^{*+} \tau \nu$ polarization of D* and τ
 - Muonic $B \rightarrow D^{*+} \tau \nu$ angular distributions
 - $\Rightarrow \mathscr{R}(D^{*+})_{light}$

 - Muonic $\mathscr{R}(D_s) \mathscr{R}(D_s^*)$, hadronic $\mathscr{R}(D_s) \mathscr{R}(D_s^*)$ → Run 2 muonic $\mathscr{R}(J/\Psi)$, hadronic $\mathscr{R}(J/\Psi)$
 - → Muonic $\mathscr{R}(\Lambda_c)$, hadronic $\mathscr{R}(\Lambda_c)$

Upcoming Run 1-2 measurements

Some of these may take several years, but **aim to** cover as many observables as possible

Assumptions on evolution of $\mathscr{R}(X_c)$

Ru	n 1	L	S1		Ru	.n 2			LS2		-	Run 3	6		LS3]	Run 4	ŀ	LS4]	Run 5	5	LS5	Rur
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
1.1	2.0	-	-	0.3	1.7	1.7	2.2	-	-	-	8.3	8.3	8.3	-	-	-	8.3	8.3	8.3	-	50	50	50	-	50

~ Extrapolate $\mathscr{R}(D^*)$ based on Run 1 muonic $\mathscr{R}(D^{*+})$ assuming → 2× more stats starting in **Run 1** from adding $\mathscr{R}(D^{*0})$ → 3× more stats starting in Run 2 from better HLT (1.5×) and cross section (2×) → 2× more stats starting in Run 3 from no hardware trigger → Systematics scale with data but floor of 0.5% (optimistic) and 3% (pessimistic)

- ~ Extrapolate $\mathscr{R}(J/\Psi)$ based on Run 1 muonic $\mathscr{R}(J/\Psi)$
 - Systematics scale with data but floor of 1% (optimistic) and 5% (pessimistic)

~ Estimate the other species based on $\mathscr{R}(D^*)$ extrapolation and

- \rightarrow 1/4× stats for $\mathscr{R}(D)$ from smaller BF and no feed-down
- 1/16× stats for $\mathscr{R}(D_s^{(*)})$ from $f_s/(f_u + f_d)$ and extra track (1/2×)
- → 1/6× stats for $\Re(\Lambda_c)$ from $f_{\Lambda_b}/(f_u + f_d) \sim 1/4$, extra track (1/2×), and larger Λ_c BF
- → 1/20× stats for $\mathscr{R}(\Lambda_c^*)$ from $f_{\Lambda_h}/(f_u + f_d) \sim 1/4$, two slow pions and lower BF
- → Systematics scale with data but floor of 1% (optimistic) and 5% (pessimistic) but for $\mathscr{R}(D)$ same as $\mathscr{R}(D^*)$

Rough assumptions

based on BFs and fragmentation fractions and building on work from Patrick Owen

~ Enormous improvement from Upgrade I (Runs 3+4)

→ 50 fb⁻¹ plus factor of two from no hardware trigger

~ After Upgrade II (Runs 5+6) it depends on systematics scenario

- Significant gains for $\mathscr{R}(J/\Psi)$, $\mathscr{R}(D_s^{(*)})$, and $\mathscr{R}(\Lambda_c^*)$ if we can control FF systematics

Dataset up to year

Manuel Franco Sevilla

Prospects for $\mathscr{R}(X_{c})$

Dataset up to year

Measuring distributions

Manuel Franco Sevilla

 $\mathrm{d}\Gamma/\mathrm{d}\cos\theta_{\tau}$

Challenges of measuring distributions at LHCb

make distributions challenging

des and p

Manuel Franco Sevilla

Repossible sensitivity to angular distributions

 Hadronic analyses expected to have good angular sensitivity → Hill, John, Ke, Poluektov, JHEP **2019**, 133 (2019) 1908.04643

Manuel Franco Sevilla

LHCb upgrades and prospects for charged Lepton Universality Violation

True χ [rad]

- ~ A program of updates is being carried out to fully exploit the LHC potential for flavor physics
 - **Remove hardware trigger**, improve detector **longevity** and **performance**
 - → Major challenges have been overcome for U1, but schedule challenging

~LHCb has a unique ability to study $b \rightarrow c \tau \nu$ transitions

- $\Rightarrow \mathscr{R}(D^{(*)}), \mathscr{R}(D^{(*)}), \mathscr{R}(D^{(*)}), \mathscr{R}(J/\Psi), \mathscr{R}(\Lambda^{(*)})$ with muonic analyses
- Important kinematic distributions with hadronic analyses
- → Upgrades will allow us to reach 0.5-3% uncertainties
- Challenges ahead
 - + Will need an order of magnitude more MC than what FastSim can do today
 - + Important to calculate and measure all FF and control other systematics

Dataset up to year

Manuel Franco Sevilla

COVID-19 impact

~ COVID-19 shut down most activities in March

- Work on documentation, database, procedure optimization
- ~ **RF foil installation** one of CERN's pilot projects Zoom-supervised and completed in May!
 - ~ Module production resumed over Summer
 - Pandemic slows down everything
 - On track to meet updated LS2 schedule

No PPE shortage will stop the VELO production

Slide 53

First post-COVID-19 modules

~ Module production **resumed** over the summer

Improved procedures

~ On track to meet updated LS2 schedule

No PPE shortage will stop the VELO production

Manuel Franco Sevilla

TIMP COVID-19 impact and project status

~ Ongoing activities

- Hybrid and readout electronics qualification
- Module production and stave assembly
- Cabling, soldering, and mechanics assembly/procurement
- ~ Key challenges
 - → Inner ASIC and 8-ASIC hybrid designs to be validated
 - Manpower at CERN for installation and commissioning
- contingency!

- Operations severely impacted by lockdowns set up to stop the spread of COVID-19
 - Some activities such as design or fw/sw development continued

Most components delivered

On track to meet updated LS2 schedule, but no

Sensor+ASIC characterization

- **Beam test** at Fermilab (March 2019)
- Type A unirradiated sensor
 - → 99.5% efficiency and SN ~ 12
- ~ Type B sensor irradiated to 2x maximum dose
 - → 94% efficiency and SN ~ 11
 - Partly due to readout limitation, most efficiency will be recovered with LHCb readout

Manuel Franco Sevilla

Final system expected to have single-hit high efficiency (> 99%) and good signal-to-noise ratio throughout experiment lifetime

M. Artuso et al, "First Beam Test of UT Sensors with the SALT 3.0 Readout ASIC" (2019) DOI:10.2172/1568842

		- 1
	120	
	110	
	100	
	90	
y	80	\odot
	70	<u>ک</u>
	60	Suc
	50	
	40	뚭
	30	
	20	
	10	
)	0	
600		
		- 1

